

PREREQUISITE KNOWLEDGE & SKILLS

The foundations needed to thrive in this subject.

Who should study this subject?

You will be well suited to this course if you enjoy GCSE Physics, have an interest in engineering, have strong mathematical skills, have a keen interest in how the world works, enjoy problem solving, and want to develop your scientific practical skills.

Key Skills developed during KS4:

St George's course entry requirements: Combined Science Trilogy: 6-6 or Physics: 6, Maths: 6

St George's 6th Form Requirements: "A minimum of five full GCSEs or equivalent at grades 9–5, which would include English (Language or Literature)..."

It is not essential that students take A Level Mathematics, but it is strongly recommended due to the highly mathematical nature of the subject, especially in the latter parts of the 2-year course.

It is strongly advised to reach grade 7 or above in the Physics papers of Double or Separate Science to cope with the more challenging A Level content and a grade 7 or above in GCSE Maths due to the very numerate nature of the Physics A level.

QUALIFICATION

Exam Board, aims and objectives.

AQA A Level Physics (7408)

Courses based on these specifications should encourage students to:

- develop their interest in and enthusiasm for the subject, including developing an interest in further study and careers associated with the subject
- develop essential knowledge and understanding of different areas of the subject and how they relate to each other
- develop and demonstrate a deep appreciation of the skills, knowledge and understanding of scientific methods
- develop competence and confidence in a variety of practical, mathematical and problem solving skills
- understand how society makes decisions about scientific issues and how the sciences contribute to the success of the economy and society
- use theories, models and ideas to develop scientific explanations
- use knowledge and understanding to pose scientific questions, define scientific problems, present scientific arguments and scientific ideas
- use appropriate methodology, including information and communication technology (ICT), to
- answer scientific questions and solve scientific problems

The exams will measure how students have achieved the following assessment objectives.

AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures.

AO2: Apply knowledge and understanding of scientific ideas, processes, techniques and procedures:

- in a theoretical context
- in a practical context
- when handling qualitative data
- when handling quantitative data.

AO3: Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation to issues, to:

- · make judgements and reach conclusions
- develop and refine practical design and procedures

li	ASSESSMENT Internal Internal and	Internal Assessment: End of Topic Tests, Yr 12 Exam, Yr 13 Mock Exam, Required practicals - 12 practicals (some with multiple parts) assessed throughout the course
	inal assessment.	Final assessment: A Level Exams (3 papers - 2 hours each) • Paper 1 - Sections 1 to 5 and 6.1 (Periodic motion) • Paper 2 - 6.2 (Thermal Physics), 7 and 8 • Paper 3 - Section A: Practical skills and data analysis, Section B: Turning Points in Physics Practical assessment (pass/fail) – teacher assessed This does not directly contribute to the overall A level grade but a pass is essential for most science-based degree courses. Practical techniques and general scientific skills are assessed within the written exams.
7 v	ENRICHMENT Trips & Visits, vider reading, ttc.	Visits and Events: Cambridge Olympiads. Wider reading: Physics Review subscription available at a discount
V s	NEXT STEPS Where this subject can take you.	Related University Courses: Physics, Engineering, Natural Sciences, Maths, Computer Science, Economics, Accountancy. Career Paths: Academia, research scientist, engineering, medical physics, astronomy, architecture, medicine, telecommunications, electronics, meteorologist, geophysics, teaching(!), finance, IT.

	Year 12
Autumn	Topics: Quantum Phenomena, Particle Physics, Forces and Equilibrium, Motion (SUVAT)
Term	Skills: Knowledge of key facts, Research skills, Presentation Skills, Mathematical skills in Science, Problem Solving, Practical Skills, Presentation of data, Analysing data, Risk Assessing.
	Assessment: End of Topic Tests, Required Practical Lab Reports
Spring Term	Topics: Electric Current, DC Circuits, Newton's Laws, Momentum, Energy Skills: Knowledge of key facts, Mathematical skills in Science, Problem Solving, Practical Skills, Presentation of data, Analysing data, Risk Assessing. Assessment: End of Topic Tests, Required Practical Lab Reports
Summer Term	Topics: Materials, Waves, Optics Skills: Knowledge of key facts, Mathematical skills in Science, Problem Solving, Practical Skills, Presentation of data, Analysing data, Risk Assessing. Assessment: Year 12 Exam, End of Topic Tests, Required Practical Lab Reports

	Year 13
Autumn Term	Topics: Circular Motion, Simple Harmonic Motion (SHM), Gravitational Fields, Electric Fields
ICIII	Skills: Knowledge of key facts, Research skills, Presentation Skills, Mathematical skills in Science, Problem

	Solving, Practical Skills, Presentation of data, Analysing data, Risk Assessing. Assessment: End of Topic Tests, Required Practical Lab Reports
Spring Term	Topics: Thermal Physics, Ideal Gases, Radioactivity, Capacitors, Magnetic Fields Skills: Knowledge of key facts, Research skills, Presentation Skills, Mathematical skills in Science, Problem Solving, Practical Skills, Presentation of data, Analysing data, Risk Assessing. Assessment: Year 13 Mock Exam, End of Topic Tests, Required Practical Lab Reports
Summer Term	Topics: Nuclear Energy, Electromagnetic Induction Skills: Knowledge of key facts, Research skills, Presentation Skills, Mathematical skills in Science, Problem Solving, Practical Skills, Presentation of data, Analysing data, Risk Assessing. Assessment: End of Topic Tests, Required Practical Lab Reports